ACCELERATED COMMUNICATION

Influence of Recombinant γ -Aminobutyric Acid- $_{\rm A}$ Receptor Subunit Composition on the Action of Allosteric Modulators of γ -Aminobutyric Acid-Gated Cl $^-$ Currents

GIULIA PUIA, STEFANO VICINI, PETER H. SEEBURG, and ERMINIO COSTA

Fidia-Georgetown Institute for the Neurosciences, Georgetown University School of Medicine, Washington DC 20007 (G.P., S.V., E.C.), and Center for Molecular Biology, University of Heidelberg, D6900 Heidelberg FRG (P.H.S.)

Received November 28, 1990; Accepted March 14, 1991

SUMMARY

 γ -Aminobutyric acid (GABA)-activated CI⁻ currents in neonatal rat cortical neurons and in cultured cells engineered for the expression of specific molecular forms of the GABA $_{\Lambda}$ receptor α , β , and γ subunits, were recorded with the patch-clamp technique in the whole-cell configuration. The effects of various allosteric modulators of GABA $_{\Lambda}$ receptors were determined. Diazepam and clonazepam showed greater efficacy as positive modulators of GABA-elicited currents in $\alpha 2\beta 1\gamma 2$ or $\alpha 3\beta 1\gamma 2$ receptors than in $\alpha 1\beta 1\gamma 2$ or $\alpha 5\beta 1\gamma 2$ receptors or in cortical neurons. Alpidem was more efficacious at $\alpha 1\beta 1\gamma 2$ or $\alpha 2\beta 1\gamma 2$ receptors than at $\alpha 1\beta 1\gamma 2$ or $\alpha 5\beta 1\gamma 2$ receptors or in cortical neurons. Conversely, zolpidem was equally efficacious for all these receptors except for $\alpha 5\beta 1\gamma 2$. Both imidazopyridines (alpidem and zolpidem) were virtually ineffective at modulating the GABA response of $\alpha 5\beta 1\gamma 2$ receptors and in almost all the receptors assembled from $\alpha 1$,

 $\alpha 2$, $\alpha 3$, or $\alpha 5$ subunits together with $\beta 1$ and $\gamma 1$ subunits. The β -carboline derivatives methyl- β -7-dimethoxy-4-ethyl- β -carboline-3-carboxylate (DMCM) and methyl- β -carboline-3-carboxylate (β -CCM) elicited a positive allosteric modulation of $\alpha 1\beta 1\gamma 1$ or $\alpha 2\beta 1\gamma 1$ receptors, whereas they acted as negative allosteric modulators at nearly all other receptors tested, as they do in cortical neurons. Although the positive allosteric modulation by β -carbolines never exceeded a doubling of the GABA response, DMCM was more efficacious at $\alpha 1\beta 1\gamma 1$ receptors and β -CCM was more efficacious at $\alpha 2\beta 1\gamma 1$ receptors. DMCM was inactive at $\alpha 3\beta 1\gamma 1$ receptors, whereas β -CCM was virtually inactive at $\alpha 5\beta 1\gamma 1$ receptors. The benzodiazepine 4'-chlorodiazepam, which is a negative modulator resistent to flumazenil inhibition, acted at all the various GABAA receptors that contained a γ subunit.

The GABA_A receptor is the most abundant inhibitory receptor in mammalian brain; this receptor has a heteropolymeric structure that forms a Cl⁻ channel (1). To date, 12 distinct receptor subunits have been identified (six α , three β , two γ , and one δ) (2–10). The biophysical properties of receptors assembled from a number of subunit combinations have been defined (11).

GABA binding to its specific recognition site on the GABAA receptor opens the ion channel and allows an inward flow of Cl⁻ into the cell. This Cl⁻ current can be regulated both by drugs and by endogenous ligands that act as positive or negative allosteric modulators. GABA action can be modified by isosteric receptor antagonists, which are thought to bind to the extracellular domain of the receptor. Allosteric modulation is elicited by two classes of compounds, those that act on the extracellular domain and those that act on the channel domain of the

receptor (1), with both classes including positive and negative allosteric modulators. The positive modulators acting on the extracellular domain include BZs, IZs, and triazolopyridazines, whereas the negative modulators mainly comprise BC derivatives. These positive and negative allosteric modulators act on the extracellular domain of the GABAA receptor and are inhibited by flumazenil (1). The only BZ known to act as negative modulator is 4'-chlorodiazepam, but its action is flumazenil resistant (12). The presence or absence of the γ 2 subunit in the GABA, receptor structure can influence the action of positive allosteric modulators (4). In contrast, the effects of drugs that bind within the channel domain and act as positive (barbiturates and steroid hormone derivatives) or negative (pregnenolone sulfate and picrotoxin) allosteric modulators do not appear to depend on the structural configuration of the receptor (3, 4, 13, 14). These compounds also act on homopolymeric receptors

ABBREVIATIONS: GABA_Λ receptor, type A γ -aminobutyric acid receptor; DMCM, methyl-6,7-dimethoxy-4-ethyl- β -carboline-3-carboxylate; GABA, γ -aminobutyric acid; β -CCM, methyl- β -carboline-3-acetamide hemitartrate; alpidem, N,N-dipropyl-6-chloro-2-(4-chlorophenyl)imidazo[1,2-a]-pyridine-3-acetamidehemitartrate; BZ, benzodiazepine; BC, β -carboline; IZ, imidazopyridine; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EGTA, ethylene glycol bis(β -aminoethyl ether)-N,N,N',N'-tetraacetic acid.

(3, 13, 14). The activities of BCs and BZs, including 4'-chlorodiazepam, require a heteropolymeric structure containing α , β , and γ subunits (4, 12).

Recently, the distinction between the type I and type II classes of BZs based on binding studies (15) was shown to be related to different molecular forms of the α subunit (16). However, in situ hybridization studies (5, 17–19) of different brain areas and binding studies with various GABA_A receptor subunit assemblies (4, 7, 13) provided evidence that the natural heterogeneity of GABA_A receptor subunits is more complex, and the assumption that there are only two natural types of BZ receptor appears to be reductionistic.

Our present studies address the pharmacological profiles of three BZs (diazepam, clonazepam, and 4'-chlorodiazepam), two BCs (DMCM and β -CCM), and two IZs (alpidem and zolpidem). We describe the effects of subunit compositions of heteropolymeric recombinant GABA, receptors on the efficacy and potency of these allosteric modulators and on the direction of the allosteric modulation they elicit.

Materials and Methods

Primary culture of cortical neurons. Neonatal rat cortical neurons were prepared as described (20). Briefly, cells were dispersed with trypsin (0.25 mg/ml; Sigma) and plated at a density of $0.8-1\times10^6$ on 35-mm Nunc dishes that were coated with poly-L-lysine (10 μ g/ml; Sigma). The cultures were maintained in basal Eagle's medium, 10% fetal bovine serum (GIBCO), 25 mM KCl, 2 mM glutamine (Sigma), 100 μ g/ml gentamicin (GIBCO), for 1 to 3 weeks. After 24 hr, the incubation medium was replaced and 1 μ M cytosine arabinofuranoside was added to inhibit replication of nonneuronal cells.

Culture of kidney embryonic cell line and cDNA transfection. Transformed human embryonic kidney 293 cells (American Type Culture Collection no. CRL 1573) were grown in minimal essential medium (GIBCO), supplemented with 10% fetal bovine serum, 100 units/ml penicillin (GIBCO), and 100 units/ml streptomycin (GIBCO), in a 6% CO₂ incubator. Exponentially growing cells were dispersed with trypsin and seeded at 2×10^5 cells/35-mm dish, in 2 ml of culture medium. Transfection was performed with the calcium phosphate precipitation technique (21). Human (α 1, α 2, α 3, β 1, γ 1, and γ 2) and rat (α 5) GABA receptor subunit cDNAs singly inserted into the eukaryotic expression vector pCIS2 (22) were used to perform the transfections. Cells were incubated in the presence (3 µg/35-mm dish) of one or more supercoiled plasmids for 12-16 hr at 37°, under 3% CO₂. The medium was removed, and the cells were rinsed twice with culture medium and then incubated in the same medium for 24 hr at 37°, under 6% CO2, before electrophysiological studies. Cells that were analyzed expressed the following subunit combinations: $\alpha 1\beta 1\gamma 2$, $\alpha 2\beta 1\gamma 2$, $\alpha 3\beta 1\gamma 2$, $\alpha 5\beta 1\gamma 2$, $\alpha 1\beta 1\gamma 1$, $\alpha 2\beta 1\gamma 1$, $\alpha 3\beta 1\gamma 1$, and $\alpha 5\beta 1\gamma 1$.

Electrophysiology. Primary cultures of cortical neurons or cultures of transfected cells were studied with the single-electrode voltage-clamp technique in the whole-cell configuration (23), on the stage of an inverted microscope (Zeiss IM-35) at room temperature. The recording pipette contained 145 mm CsCl, 1 mm MgCl₂, 11 nm EGTA, and 10 mm HEPES-CsOH (pH 7.2). Cells were bathed in 145 mm NaCl, 5 mm KCl, 2 mm CaCl₂, and 5 mm HEPES-NaOH (pH 7.4); osmolarity was adjusted to 325 mOs M with sucrose. GABA (0.5 M in H₂O, adjusted to pH 4 with HCl) was applied by iontophoresis with 30-msec pulses of positive current. With GABA iontophoretic currents in the 25-50 nA range, outward currents were generated in neurons or transfected cells in such a way as to obtain a peak amplitude of 150-200 pA. BZs were a gift from Hoffman La Roche, DMCM and β -CCM were from Ferrosan, and the IZs were from Syntelabo. All drugs were dissolved in bath solution containing dimethylsulfoxide at a maximal final concentration of 0.01%. Drugs were applied by pressure (2 to 4 psi), in the proximity of the cell body, with micropipettes of 5-10 µm diameter. The application of dimethylsulfoxide (0.01% in bath medium) failed to modify GABA responses. To avoid uncontrolled drug leakage, we kept the pipette outside the bath before the pressure injection and brought it into proximity with the recorded cell just before drug application. Drugs were applied for 5 sec between two GABA pulses delivered every 10 sec. The maximal Cl⁻ current measured from each cell was larger (>1 nA) than the test response of 150–200 pA we used, indicating that the percentages of potentiation we observed were far below the maximal efficacy of the system. Current traces were recorded by a patch-clamp amplifier (EPC-7; List Electronics), filtered at 1500 Hz (eight-pole low-pass Bessel; Frequency Devices), and recorded on a chart recorder (Gould 2600S) for off-line analysis.

Often the GABA response was greater in cells adjacent to those from which currents were being recorded. This observation might relate to electrical coupling between 293 cells (13). This phenomenon made it easier to find cells expressing the GABAA receptor subunits. Recordings were performed within 3 days of transfection.

Results

Action of diazepam and alpidem on $\alpha x\beta 1\gamma 2$ receptors. Examples of the positive modulatory effects of diazepam and alpidem (both at $10~\mu M$) on native GABA_A receptors of cortical neurons and on various reconstituted GABA_A receptors are shown in Fig. 1. As evident from these records, alpidem and diazepam showed very little activity toward $\alpha 5\beta 1\gamma 2$ receptors, and the extent of facilitation by diazepam was much greater for $\alpha 3\beta 1\gamma 2$ receptors than for other receptors. Alpidem appeared to be nearly as efficacious at $\alpha 1\beta 1\gamma 2$ as at native receptors and lower at $\alpha 3\beta 1\gamma 2$ receptors.

Differences in the efficacy and potency of diazepam at $\alpha x \beta 1 \gamma 2$ receptors. We measured the allosteric modulation of the GABA response mediated by different concentrations $(10^{-9} \text{ to } 10^{-5} \text{ M})$ of diazepam (Fig. 2) in cortical and in $\alpha x \beta 1 \gamma 2$ receptors. Diazepam had similarly low efficacy at $\alpha 1 \beta 1 \gamma 2$, $\alpha 5 \beta 1 \gamma 2$, and native GABAA receptors, and its lowest potency was at $\alpha 5 \beta 1 \gamma 2$ receptors. Diazepam efficacy was nearly 3 times greater for the $\alpha 3 \beta 1 \gamma 2$ assemblage than for $\alpha 1 \beta 1 \gamma 2$, $\alpha 5 \beta 1 \gamma 2$, and native receptors, and at $\alpha 2 \beta 1 \gamma 2$ receptors diazepam showed an intermediate efficacy. The EC50 of diazepam was approximately the same for the native receptors and for the $\alpha 1 \beta 1 \gamma 2$ and $\alpha 2 \beta 1 \gamma 2$ receptors ($\sim 50 \text{ nM}$) but was much greater for the $\alpha 5 \beta 1 \gamma 2$ receptor ($\sim 4000 \text{ nM}$).

Differences in IZ and BZ efficacy at various reconstituted GABA_A receptors. Fig. 3A shows the effects elicited by two BZs and two IZs, all at a concentration of $10~\mu$ M, in cortical cells and in cells expressing $\alpha 1\beta 1\gamma 2$, $\alpha 2\beta 1\gamma 2$, $\alpha 3\beta 1\gamma 2$, or $\alpha 5\beta 1\gamma 2$ receptors. We chose the $\alpha 1\beta 1\gamma 2$ combination as a reference point because such a receptor seems to be frequently expressed in brain (18). Diazepam and clonazepam were equally efficacious in cortical and in $\alpha 1\beta 1\gamma 2$ receptors, but their efficacy increased considerably when the $\alpha 2$ subunit was present and was even greater in $\alpha 3\beta 1\gamma 2$ receptors. However, a significantly greater potentiation at the $\alpha 3\beta 1\gamma 2$ receptors, compared with $\alpha 1\beta 1\gamma 2$ receptors (Duncan test), could be observed.

Zolpidem and alpidem did not show significant differences in efficacy between $\alpha 1\beta 1\gamma 2$, $\alpha 2\beta 1\gamma 2$, $\alpha 3\beta 1\gamma 2$, and cortical receptors (Fig. 3A) but failed to potentiate GABA responses at $\alpha 5\beta 1\gamma 2$ receptors.

Decreased sensitivity to BZs and IZs at receptors containing the $\gamma 1$ subunit. We further investigated the modulation of the GABA response by the two BZs and the two IZs in cells expressing the $\gamma 1$ subunit together with $\alpha 1\beta 1$, $\alpha 2\beta 1$,

Fig. 1. Differential sensitivity to diazepam and alpidem of neurons expressing native GABA_A receptors (cortex) and of cells engineered to express $\alpha 1\beta 1\gamma 2$, $\alpha 3\beta 1\gamma 2$, or $\alpha 5\beta 1\gamma 2$ receptors. The *upper trace* marks the repetitive iontophoretic application of GABA (50 nA for 30 msec). GABA elicited an inward Ci⁻ current. Diazepam and alpidem, applied by pressure at a concentration of 10 μ M for 2 sec (arrowheads), potentiated the inward current.

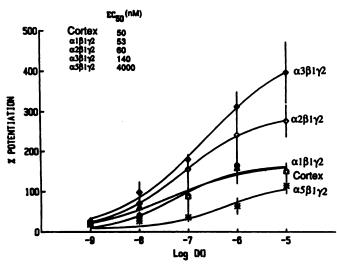
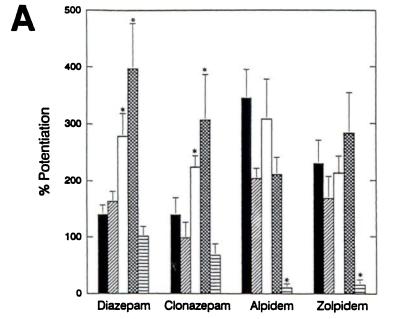


Fig. 2. Dose-dependent potentiation by diazepam of GABA-evoked CI current in cortical cells and cells expressing $\alpha1\beta1\gamma2$, $\alpha2\beta1\gamma2$, $\alpha3\beta1\gamma2$, and $\alpha5\beta1\gamma2$ transfected receptors. Each concentration point is mean \pm standard error of six different cells. The EC₅₀ of each curve is shown in the *inset*. The maximal potentiation values for the different receptors are as follows: $\alpha5\beta1\gamma2$, 110%; $\alpha1\beta1\gamma2$ and cortex, 120%; $\alpha2\beta1\gamma2$, 270%; and $\alpha3\beta1\gamma2$, 400%.

 $\alpha3\beta1$, or $\alpha5\beta1$ subunit combinations (Fig. 3B). Each drug was much more efficacious at receptors containing the $\gamma2$ rather than the $\gamma1$ subunit. The efficacies of diazepam and clonazepam at GABA_A receptors containing the $\gamma1$ subunit were reduced by about 50%, compared with $\alpha1\beta1\gamma2$ receptors. Alpidem and zolpidem efficacies were markedly decreased (approximately 85% for alpidem and 75% for zolpidem) at $\alpha1\beta1\gamma1$ receptors, compared with $\alpha1\beta1\gamma2$ receptors, and there was virtually no potentiation of the GABA response in cells expressing $\alpha1\beta1\gamma1$, $\alpha2\beta1\gamma1$, or $\alpha3\beta1\gamma1$ receptors.

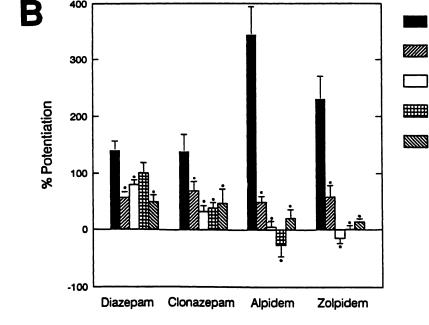

Negative modulatory activity at recombinant GABAA receptors. The BCs DMCM and β -CCM, as well as 4'-chlorodiazepam, were tested on receptors containing the $\gamma 1$ or $\gamma 2$ subunit together with $\alpha 1\beta 1$, $\alpha 2\beta 1$, $\alpha 3\beta 1$, or $\alpha 5\beta 1$ subunit combinations (Fig. 4). 4'-Chlorodiazepam decreased GABA-activated Cl⁻ currents in cortical neurons and in all the recombinant receptors by 30-70%. In contrast, DMCM and β -CCM behaved as negative modulators in cortical neurons and at receptors containing the γ^2 subunit but acted as positive modulators at $\alpha 1\beta 1\gamma 1$ and $\alpha 2\beta 1\gamma 1$ receptors. DMCM was more efficacious at $\alpha 1\beta 1\gamma 1$ than at $\alpha 2\beta 1\gamma 1$ receptors; conversely, β -CCM showed a higher efficacy at $\alpha 2\beta 1\gamma 1$ than at $\alpha 1\beta 1\gamma 1$ receptors. At $\alpha 3\beta 1\gamma 1$ receptors, β -CCM was a negative modulator, whereas DMCM was almost inactive. DMCM elicited a weak positive modulation at $\alpha 5\beta 1\gamma 1$ receptors, whereas β -CCM was inactive. Thus, BC derivatives might behave as positive or negative modulators according to the receptor structure. Fig. 5 shows the dose-dependent positive allosteric modulation by DMCM of GABA-activated Cl⁻ currents in $\alpha 1\beta 1\gamma 1$ receptors and the dose-dependent negative allosteric modulation by the same drug of GABA-activated Cl⁻ currents in $\alpha 1\beta 1\gamma 2$ receptors.

Discussion

Recent cloning of the cDNAs encoding for the mRNA for various subunits of the GABA_A receptor (2-10) has prompted a search for the functional significance of this structural heterogeneity. Our experiments show that this heterogeneity causes a diversity in the pharmacological profiles of BZ, BC, and IZ acting as allosteric modulators of GABA-gated Cl-currents. This diversity may arise from differences in the structure of the modulatory center where these drugs act. In spite of the fact that differences in the stochiometry or post-translational modifications of reconstituted receptors might underlie some of the diversity we observed, we believe that our

400

α2β1γ2

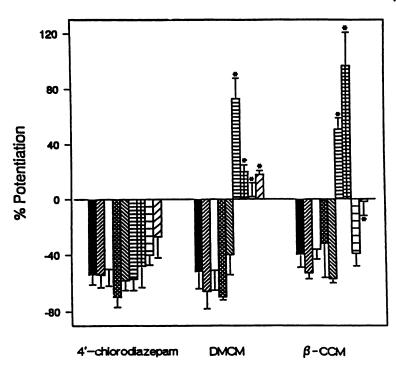

α3β1γ2

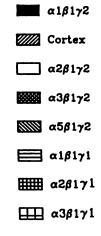
α5β1γ2

α1β1γ2 $\alpha 1 \beta 1 \gamma 1$ $\alpha 2\beta 1\gamma 1$ α3β1γ1

α5β1γ1

Fig. 3. A, BZ and IZ modulation of the GABA response of native receptors and of reconstituted receptors containing $\alpha 1\beta 1$, $\alpha 2\beta 1$, $\alpha 3\beta 1$, and $\alpha 5\beta 1$ subunit combinations together with the γ 2 subunit. B. BZ and IZ modulation of the GABA responses of $\alpha 1\beta 1\gamma 1$, $\alpha 2\beta 1\gamma 1$, $\alpha 3\beta 1\gamma 1$, or $\alpha 5\beta 1\gamma 1$ receptors. Each value is the mean ± standard error of 8-12 cells. *, Subunit combinations showing a significant (ρ < 0.05, Duncan test) difference in potentiation of the GABA response, compared with that measured for $\alpha 1\beta 1\gamma 2$ receptors. Drug concentrations in all experiments were 10⁻⁶ м.




results are a good first approximation of structural differences in pharmacological profiles of GABA, receptors. The drug efficacy not only changes in relation to the molecular form of the α subunit but also depends on the molecular structure of the γ subunit. Indeed, the direction of the modulatory effect of BC derivatives seems to be markedly dependent on the type of γ subunit.

Drug potency was studied only for diazepam and appeared to be related to changes in the molecular form of the α subunit, in contrast to the efficacy of 4'-chlorodiazepam, a selective ligand for the peripheral BZ receptor that also decreases GABAgated Cl⁻ currents in a manner that is insensitive to flumazenil (12). Moreover, the direction of its modulatory action appeared to be independent of the molecular form of α and γ subunits. This difference suggests that the molecular mechanisms that are operative in the two types of allosteric modulation may not be similar; 4'-chlorodiazepam modulation may act via the transmembrane domain of the receptor, which is known to be insensitive to flumazenil inhibiton.

Ligand binding experiments have indicated that at least two distinct classes of BZ receptors, termed type I and type II (15), exist in the brain. These binding differences have been reproduced with receptors containing $\beta 1$, $\gamma 2$, and either $\alpha 1$ (type I) or $\alpha 2$ or $\alpha 3$ (type II) GABA receptor subunits (16). Furthermore, in those receptors, diazepam binding was facilitated by the presence of GABA to a greater extent if the α 3 subunit, rather than $\alpha 1$ or $\alpha 2$ subunits, was present. This not only was the first indication that distinct receptor subtypes have different BZ sensitivities but also suggested that BZ type II receptors are not uniform. Our results verify the existence of such functional differences and expand on the relation between struc-

Downloaded from molpharm.aspetjournals.org at Universidade do Estado do Rio de Janeiro on December 4, 2012

 $\alpha 5\beta 1\gamma 1$

Fig. 4. DMCM and β -CCM modulation of GABA responses in cells expressing different subunit assemblies. Drugs were applied at a concentration of 10^{-6} M. °, Significant (p < 0.05, Duncan test) difference relative to the effect on $\alpha 1\beta 1\gamma 2$ receptors. Each value is an average of six cells.

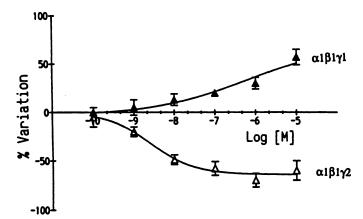


Fig. 5. Dose-response to DMCM of GABA-evoked Cl $^-$ current in cells expressing $\alpha 1\beta 1\gamma 2$ and $\alpha 1\beta 1\gamma 1$ transfected receptors. Each concentration point is mean \pm standard error of four different cells.

tural heterogeneity and functional diversity in the allosteric modulation of the GABA receptor by BZs, BCs, and IZs.

The extent of GABA activity potentiation by maximally efficacious doses of diazepam and clonazepam (10 µM) was similar in rat cortical neurons expressing native receptors and in cells engineered for the expression of $\alpha 1\beta 1\gamma 2$ and $\alpha 5\beta 1\gamma 2$ receptors. However, both drugs were more efficacious when $\alpha 2$ substituted for $\alpha 1$, and even more so when $\alpha 3$ substituted for α 1. In fact, the diazepam dose-response curves for potentiation of GABA activity in cortical neurons and in cells expressing $\alpha 1\beta 1\gamma 2$ or $\alpha 5\beta 1\gamma 2$ receptors demonstrate similar low efficacies of the drug, whereas diazepam efficacy was much greater (4fold potentiation versus 1.5-fold) in $\alpha 3\beta 1\gamma 2$ receptors. One might surmise that this difference could be due to a greater number of cellularly expressed $\alpha 3\beta 1\gamma 2$ receptors than $\alpha 1\beta 1\gamma 2$ or $\alpha 5\beta 1\gamma 2$ receptors. However, this possibility can be excluded because, if this were the case, all the drugs tested should have produced a maximal potentiation of GABA activity in cells

expressing $\alpha 3\beta 1\gamma 2$ receptors. Alpidem did not show maximal potentiation with $\alpha 3\beta 1\gamma 2$ receptors; the efficacy of this IZ was greatest for $\alpha 1\beta 1\gamma 2$ and $\alpha 2\beta 1\gamma 2$ receptors.

Very likely, GABA_A receptors expressed in cortical neurons consist of a heterogeneous receptor population with regard to subunit compositions, and the responses measured at these native receptors probably reflect an average of the drug interactions with diverse GABA_A receptor subtypes.

Our data suggest that certain subunit assemblages are more susceptible to modulation by IZs than by BZs and support the results of previous binding studies (7) showing that the affinity of zolpidem for receptors containing $\alpha 5$ is lower than for $\alpha 2$ or $\alpha 3$ subunit-containing receptors and that zolpidem shows the highest affinity for receptors containing the $\alpha 1$ subunit.

The modulation of Cl⁻ currents by both BZs and IZs was markedly reduced in GABA_A receptors that carried the γ 1 subunit (10) instead of γ 2 (Fig. 3B). Furthermore, there was a tendency for zolpidem and alpidem to elicit negative modulation when applied to cells expressing $\alpha 2\beta 1\gamma 1$ or $\alpha 3\beta 1\gamma 1$ receptors. Such a subunit combination might be expressed in astroglial cells, but a complete study of IZ and BZ modulation of GABA action on these cells is lacking. However, a positive modulation of the GABA response by DMCM was described in primary cultures of astrocytes (24), which suggests that the γ 1 subunit may be present in the GABA_A receptors of glial cells.

Because certain GABA_A receptor subtypes seem to be located preferentially in certain brain structures (17–19), the relation we have demonstrated between receptor structural heterogeneity and the efficacy and potency of various anxiolytic and anxiogenic drugs may have important implications for the therapeutic targeting of these drugs to specific GABA_A receptor subtypes, perhaps with a preference for certain brain structures. Recently, the diversity of responses to BZs related to the molecular structure was investigated in GABA_A receptors expressed in *Xenopus* oocytes (25). Differences in molecular structure, conferring sensitivity to BZs, between our reconstitution

model and the Xenopus oocytes might be related to the intrinsic difference between the two expression systems and/or to species differences in recombinant subunit structures (rat versus human).

Acknowledgments

We would like to thank Dr. G. David Lange and Dr. Keith Blockehurst for helpful comments.

References

- 1. Olsen, R. W., and A. J. Tobin. Molecular biology of $GABA_A$ receptors. FASEBJ. 4:1469-1480 (1990).
- 2. Schofield, P. R., M. Darlinson, N. Fujita, D. Burt, F. Stephenson, H. Rodriguez, L. Rhee, J. Ramachandran, V. Reale, A. Glencorse, P. H. Seeburg, and E. A. Barnard. Sequence and functional expression of the GABA receptor shows a ligand gated receptor super-family. Nature (Lond.) 32:221-227
- 3. Levitan, E. S., P. R. Schofield, D. R. Burt, L. M. Rhee, W. Wisden, M. Kohler, N. Fujita, H. F. Rodriguez, A. Stephenson, M. G. Darlinson, E. A. Barnard, and P. H. Seeburg. Structural and functional basis for GABAA receptor heterogeneity. Nature (Lond.) 335:76-79 (1988).
- 4. Pritchett, D. B., H. Sontheimer, B. Shivers, S. Ymer, H. Kettenmann, P. R. Schofield, and P. H. Seeburg. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature (Lond.) 338:582-585 (1989).
- Shivers, B. D., I. Killish, R. Sprengel, H. Sontheimer, P. R. Mohler, P. R. Schofield, and P. H. Seeburg. Two novel GABA, receptor subunits exist in distinct neuronal sub-populations. Neuron 3:327-337 (1989).
- Khrestchatisky, M., A. J. Maclennan, M. Chiang, W. Xu, M. B. Jackson, N. Brecha, C. Sternini, R. W. Olsen, and J. Tobin. A novel subunit in rat brain GABA, receptors. Neuron 3:745-753 (1989).
- 7. Pritchett, D. B., and P. H. Seeburg. γ -Aminobutyric acid, receptor α 5-subunit creates novel type II benzodiazepine receptor pharmacology. J. Neurochem. 54:1802-1804 (1990).
- Luddens, H., D. B. Pritchett, M. Kohler, I. Killish, K. Keinanen, H. Monyer, R. Sprengel, and P. H. Seeburg. Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. *Nature (Lond.)* **346**:648–651 (1990).
- Ymer, S., A. Draguhn, M. Köhler, P. R. Schoefield, and P. H. Seeburg. Sequence and expression of a novel GABA_A receptor α subunit. FEBS Lett. **258:**119-122 (1989).
- Ymer, S., A. Draghun, W. Wisden, P. Werner, K. Keinänen, P. R. Schofield, R. Sprengel, D. B. Pritchett, and P. H. Seeburg. Structural and functional characterization of the $\gamma 1$ subunit of GABA benzodiazepine receptors. EMBO J. 9:3261-3267 (1990).
- Verdoorn, T. A., A. Draguhn, S. Ymer, P. H. Seeburg, and B. Sakmann. Functional properties of recombinant rat GABA, receptors depend upon subunit composition. Neuron 4:919-928 (1990).
- 12. Puia, G., M. R. Santi, S. Vicini, D. B. Pritchett, P. H. Seeburg, and E. Costa.

- Differences in the negative allosteric modulation of γ -aminobutyric acid receptors elicited by 4'-chlorodiazepam and by a β-carboline-3-carboxylate ester: a study with natural and reconstituted receptors. Proc. Natl. Acad. Sci. USA 86:7275-7279 (1989).
- 13. Pritchett, D. B., H. Sontheimer, C. M. Gorman, H. Kettenmann, P. H. Seeburg, and P. R. Schofield. Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science (Washington D. C.) **242:**1306–1308 (1988).
- 14. Puia, G., M. R. Santi, S. Vicini, D. B. Pritchett, R. H. Purdy, S. M. Paul, P. H. Seeburg, and E. Costa. Neurosteroids act on recombinant human GABAA receptors. Neuron 4:759-765 (1990).
- 15. Sieghart, W., and M. Karobath. Molecular heterogeneity of benzodiazepine receptors. Nature (Lond.) 289:285-287 (1980).
- 16. Pritchett, D. B., H. Luddens, and P. H. Seeburg. Type I and type II GABA_Abenzodiazepine receptors produced in transfected cells. Science (Washington D. C.) 245:1389-1391 (1989).
- 17. Montpied, P., B. M. Martin, S. L. Cottingham, B. K. Stubbflefield, E. I. Ginns, and S. M. Paul. Regional distribution of the GABA, benzodiazepine eptor (α subunit) mRNA in rat brain. J. Neurochem. 51:1651–1654 (1988).
- 18. Malherbe, P., E. Siegel, R. Baur, E. Persohn, J. G. Richards, and H. Mohler. Functional characteristics and sites of gene expression of the $\alpha 1, \beta, \gamma 2$ isoform of the rat GABA, receptor. J. Neurosci. 10:2330-2337 (1990).
- Montpied, P., E. I. Ginns, B. M. Martin, D. Stetler, A. O'Carroll, S. J. Lolait, L. C. Mahan, and S. M. Paul. Multiple GABAA receptor subunit mRNA revealed by developmental and regional expression in rat, chicken and human brain. FEBS Lett. 258:94-98 (1989).
- 20. Alho, H., C. Ferrarese, S. Vicini, and F. Vaccarino. Subset of GABAergic neurons in dissociated cell culture of neonatal rat cerebral cortex show colocalization with specific modulator peptides. Dev. Brain Res. 39:193-204
- 21. Chen, C., and H. Okayama. High efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745-2752 (1987).
- Eaton, D. L., W. I. Wood, D. Eaton, P. E. Hass, P. Hollingshead, K. Wion, J. Mathers, R. M. Lawn, G. A. Vehar, and C. Gorman. Construction and characterization of an active factor III variant lacking the central one third of the molecule. *Biochemistry* 25:8343-8347 (1986).
- 23. Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. Improved patch clamp technique for high resolution current reaching from cell and cell-free membrane patches. Pflüger's Arch. 391:85–100 (1961).
 Bormann, J., and H. Kettenmann. Patch clamp study of γ-aminobutyric acid
- receptor Cl- channels in cultured astrocytes. Proc. Natl. Acad. Sci. USA 85:9336-9340 (1988).
- 25. Siegel, E., R. Baur, G. Trube, H. Möhler, and P. Malherbe. The effect of subunit composition of rat brain GABA, receptors on channel function. Neuron 5:703-711 (1990).

Send reprint requests to: Giulia Puia, Fidia-Georgetown Institute for the Neurosciences, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington DC 20007.

